

Automated Technologies Production of Preform

Aleksei Chesnokov

Head of the Laboratory of new ways of formation preform for composite materials, State Educational Institution of Higher Education Moscow Region, Korolev, Russia.

Automated radial braiding machine RP64-1-130 with a split housing

- Contour weaving with high-strength and high-modulus threads.
- Contour weaving in two and three axial (with skeletal reinforcement) schemes.
- Contour weaving products with a straight and curved axis.
- Contour weaving products with a closed axis.
- Applying a coating layer with a continuous surface hiding.
- Applying the sheath layer to larger diameters with the formation of a mesh structure.
- Independent movement of the supports in the transverse direction and joint in the axial direction.

Equipment RP64-1-130 manipulator with CNC KUKA KR-61

- 6 controlled coordinates. - 60 kg loading capacity.

Developed software for modeling and control of radial weaving

Число слоев плетения: 70 Постоянный угол укладки Угол, град: 4.245 Постоянная плотность плетения Плотность, мм: Вариант построения: Скорость, мм/мин: 100) Постоянная скорость движения оправки Параметры плетения Константы оборудования 64 Частота вращения оплеточных 1.7647 Количество оплёточных нитей: веретен, об/мин: Количество скелетных нитей: 32 180 Радиус калибра, мм: Схема армирования: триаксиальное 200 Расстояние между калибрами, мм: Параметры нитей Основная нить: Скелетная нить: 2.5 2.5 ширина, мм: ширина, мм: Прямоугольник ∨ Прямоугольник ∨ 0.33 0.33 толщина, мм: толщина, мм:

Построение 3D модели преформы

Interface programs in Russian

An example of modeling woven layers of triax reinforcement kompozit-ut.ru

An example of modeling a woven layer on a complex preform

Preform Construction Results Dialog Box

Displays

- Equipment parameters.
- Weaving parameters.
- Thread options.
- Information for programming braiding equipment.
- Parameters of the resulting preform on the selected axes.

Graphs of parameters of the woven layer along the selected skeletal threads

Work is underway to develop an automated optical quality control system for manufacturing preforms — machine vision

Automated technology of diagonal weaving of preforms

Control system DP50-1-150

Management program DP50-1-150

kompozit-ut.ru

Diagonal Weaving

Software

Automated technology of rotary weaving preforms

Element rotary installation

Practicing the principles of movement and control

The system for setting the rotation and control of the spindle position

Control system rotary installation

Braided patterns

Advantages of rotary weaving

- Increase in productivity by 5 and more times in comparison with diagonal weaving;
- No spindle impact;
- Possibilities of changing the shape of the preform cross section that are not limited by collisions of spindles.

Automated installation of reinforcement preforms

Settings for the assembly of reinforcing preforms

- Implemented reinforcement structures 3D and 4D-L.
- Preform form cylinder, cone, solid or with a hole.
- The diameter of the rod used less than 1 mm.
- The number of independently controlled coordinates 8.
- Increased productivity compared to manual assembly more than 2 times.
- Rod diameter control using an Lsten optical contactless micrometer, relative error limit 1 micron.
- Automatic documentation of the assembly process.

Installation software

 Pictorial mimics of snap-in management in preform assembly mode and debugging on the touchscreen monitor

Areas of cooperation

- Development of technology for manufacturing preforms for carbon-carbon and carbon-ceramic products according to customer requirements.
- Joint research of manufacturing technologies for preforms and products based on them.
- Development of equipment and software manufacturing preforms.
- Joint research on modeling preforms and their manufacturing process.
- Modeling the properties of products based on woven preforms.
- Joint research on the development of new preform manufacturing technologies.

State Educational Institution of Higher Education Moscow Region "University of Technology"

Engineering Center
"High-temperature composite materials"

Thanks for attention!

